# Parallel Time-Domain Boundary Element Method for 3-Dimensional Wave Equation

M. Merta<sup>12</sup> A. Veit<sup>3</sup> J. Zapletal<sup>12</sup> D. Lukáš<sup>12</sup>

 $$^{1}$$  Dept. of Applied Mathematics,  $$^{2}$$  IT4Innovations National Supercomputing Center, VŠB-TU Ostrava, Czech Republic  $$^{3}$$  The University of Chicago

michal.merta@vsb.cz

December 22, 2016

### Boundary element method in the BEM4I library

- Boundary element method
  - Reduces problem to the boundary of computational domain
  - Suitable for exterior problems or shape optimization
- BEM4I
  - Developed at IT4Innovations National Supercomputing Center, Ostrava, Czech Republic
  - C++, OpenMP & MPI, SIMD vectorization
  - Acceleration using the Intel Xeon Phi coprocessors
  - Adaptive Cross Approximation
  - BETI by interfacing the ESPRESO DDM library
  - 3D Laplace, Helmholtz, Lamé, and wave equation



#### Wave equation

#### Sound-hard scattering problem

$$\left\{ \begin{array}{rcl} \frac{1}{c^2} \frac{\partial^2 u^{\mathrm{sc}}}{\partial^2 t}(\boldsymbol{x},t) - \Delta u^{\mathrm{sc}}(\boldsymbol{x},t) &=& 0 & \text{in } \Omega \times \mathbb{R}, \\ u^{\mathrm{sc}}(\boldsymbol{x},0) &=& 0 & \text{in } \Omega, \\ \frac{\partial u^{\mathrm{sc}}}{\partial t}(\boldsymbol{x},0) &=& 0 & \text{in } \Omega, \\ \frac{\partial u^{\mathrm{sc}}}{\partial \boldsymbol{n}}(\boldsymbol{x},t) &=& -\frac{\partial u^{\mathrm{inc}}}{\partial \boldsymbol{n}}(\boldsymbol{x},t) & \text{on } \partial\Omega \times \mathbb{R}_+. \end{array} \right.$$

- Space-time integral equations
  - using the fundamental solution of the wave equation
  - global in time large system matrix
  - special quadrature method needed.



#### Boundary integral formulation

#### Boundary integral ansatz [Bamberger, Ha-Duong 86]

We search for  $u^{\mathrm{sc}}$  in the form of the retarded double-layer potential

$$u^{\mathrm{sc}} = -\frac{1}{4\pi} \int_{\Gamma} \frac{\textbf{n}_{\textbf{y}}(\textbf{x} - \textbf{y})}{\|\textbf{x} - \textbf{y}\|} \left( \frac{\phi(\textbf{y}, \textbf{t} - \|\textbf{x} - \textbf{y}\|)}{\|\textbf{x} - \textbf{y}\|^2} + \frac{\dot{\phi}(\textbf{y}, \textbf{t} - \|\textbf{x} - \textbf{y}\|)}{\|\textbf{x} - \textbf{y}\|} \right) dS_{\textbf{y}},$$

which satisfies the wave equation and the initial conditions. It remains to fulfill the Neumann boundary condition

$$\underbrace{\lim_{\substack{\Omega \ni \widetilde{\mathbf{x}} \to \mathbf{x} \in \Gamma \\ =: (W\phi)(\mathbf{x},t)}} n_{\mathbf{x}} \cdot \nabla_{\widetilde{\mathbf{x}}} u^{\mathrm{sc}}(\widetilde{\mathbf{x}},t)}_{=:(W\phi)(\mathbf{x},t)} = g(\mathbf{x},t) \text{ on } \Gamma \times [0,T],$$

where  $g := -\frac{\partial u^{\mathrm{inc}}}{\partial \boldsymbol{n}}$ .

### Boundary integral formulation

#### Weak boundary integral formulation [Bamberger, Ha-Duong 86]

Find  $\phi$  such that

$$a(\xi,\phi)=b(\xi)\quad \forall \xi\in V,$$

where

$$\begin{split} a(\xi,\phi) := \int_0^T \int_{\Gamma} \int_{\Gamma} \left\{ \frac{\mathbf{n}_{\mathbf{x}} \cdot \mathbf{n}_{\mathbf{y}}}{4\pi \|\mathbf{x} - \mathbf{y}\|} \, \dot{\xi}(\mathbf{x},t) \, \ddot{\phi}(\mathbf{y},t - \|\mathbf{x} - \mathbf{y}\|) \right. \\ &+ \left. \frac{\operatorname{curl}_{\Gamma} \dot{\xi}(\mathbf{x},t) \cdot \operatorname{curl}_{\Gamma} \phi(\mathbf{y},t - \|\mathbf{x} - \mathbf{y}\|)}{4\pi \|\mathbf{x} - \mathbf{y}\|} \right\} dS_{\mathbf{y}} \, dS_{\mathbf{x}} \, dt, \end{split}$$

$$b(\xi) := \int_0^T \int_{\Gamma} g(x,t) \,\dot{\xi}(x,t) \,dS_x \,dt.$$

#### Discretization

#### Discrete ansatz

Replace V by a finite-dimensional subspace  $V^{h,\Delta t}$  spanned by the tensor-product of N temporal and M spatial basis functions:

$$\phi^{h,\Delta t}(x,t) := \sum_{l=1}^N \sum_{j=1}^M \alpha_l^j \, \varphi_j(x) \, b_l(t).$$

We arrive at the  $(NM) \times (NM)$  block linear system

$$\begin{pmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,N} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{N,1} & \dots & \mathbf{A}_{N,N} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha}_1 \\ \vdots \\ \boldsymbol{\alpha}_N \end{pmatrix} = \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_N \end{pmatrix},$$

where

$$(\mathbf{A}_{k,l})_{i,j} := a(\varphi_i(x) b_k(t), \varphi_j(y) b_l(t)), \quad (\mathbf{b}_k)_i := b(\varphi_i(x) b_k(t)), \quad (\alpha_l)_j := \alpha_l^j.$$

#### System matrix

$$(\boldsymbol{A}_{k,l})_{i,j} = \int_{\text{supp }\varphi_{i} \text{ supp }\varphi_{j}} \int_{\boldsymbol{A}\pi \parallel \boldsymbol{x} - \boldsymbol{y} \parallel} \frac{\boldsymbol{n}_{\boldsymbol{x}} \cdot \boldsymbol{n}_{\boldsymbol{y}}}{4\pi \|\boldsymbol{x} - \boldsymbol{y}\|} \varphi_{i}(\boldsymbol{x}) \varphi_{j}(\boldsymbol{y}) \int_{0}^{T} \dot{b}_{k}(t) \ddot{b}_{l}(t - \|\boldsymbol{x} - \boldsymbol{y}\|) dt dS_{\boldsymbol{y}} dS_{\boldsymbol{x}}$$

$$+ \int_{\text{supp }\varphi_{i} \text{ supp }\varphi_{j}} \int_{\boldsymbol{A}\pi \parallel \boldsymbol{x} - \boldsymbol{y} \parallel} \frac{\text{curl}_{\Gamma} \varphi_{i}(\boldsymbol{x}) \cdot \text{curl}_{\Gamma} \varphi_{j}(\boldsymbol{y})}{4\pi \|\boldsymbol{x} - \boldsymbol{y}\|} \underbrace{\int_{0}^{T} \dot{b}_{k}(t) b_{l}(t - \|\boldsymbol{x} - \boldsymbol{y}\|) dt}_{=:\widetilde{\Psi}_{k,l}(\|\boldsymbol{x} - \boldsymbol{y}\|)} dS_{\boldsymbol{y}} dS_{\boldsymbol{x}},$$

#### Integration problem

Piecewise polynomial time-ansatz  $\leadsto$  expensive quadrature due to nontrivial intersection of the light cone

$$\operatorname{supp} \Psi_{k,l}, \quad \operatorname{supp} \widetilde{\Psi}_{k,l}$$

with

$$\operatorname{supp} \varphi_i \times \operatorname{supp} \varphi_i.$$



- In cooperation with A. Veit (Uni. of Zurich/Chicago)
- ullet  $C^{\infty}$  temporal basis functions based on the partition of unity method [Sauter, Veit, 2012]
- Temporal basis functions in the form

$$b_{i,m} := \phi_i(t) P_m(t)$$

•  $\phi_i(t)$  are  $C^{\infty}$  partition of unity function,  $\{P_m(t)\}_{m=0}^p$  are Legendre polynomial

$$f\left(t\right) := \left\{ \begin{array}{ll} \frac{1}{2} \operatorname{erf}\left(2\operatorname{artanh}t\right) + \frac{1}{2} & \left|t\right| < 1, \\ 0 & t \leq -1, \\ 1 & t \geq 1, \end{array} \right. \quad f_{i}\left(t\right) := f\left(2\frac{t - t_{i}}{\Delta t} - 1\right), \quad \text{where } f_{i}\left(t\right) = \left\{ \begin{array}{ll} 0 & t \leq t_{i}, \\ 1 & t \geq t_{i+1}. \end{array} \right.$$

$$\rho_{i}\left(t\right):=\left\{\begin{array}{ll} f_{i-1}\left(t\right) & t_{i-1}\leq t\leq t_{i},\\ 1-f_{i}\left(t\right) & t_{i}\leq t\leq t_{i+1},\\ 0 & \text{otherwise.} \end{array}\right. \qquad \varPhi_{1}:=1-f_{0}, \quad \varPhi_{N}:=f_{N-2}, \quad \forall i\in\left\{2,\ldots,N-1\right\}: \varPhi_{i}:=\rho_{i-1}.$$





$$(\boldsymbol{A}_{k,l})_{i,j} = \int_{\text{supp }\varphi_{i} \text{ supp }\varphi_{j}} \int_{\boldsymbol{A}\pi|\mathbf{x}-\mathbf{y}\|} \frac{\boldsymbol{n}_{x} \cdot \boldsymbol{n}_{y}}{4\pi\|\mathbf{x}-\mathbf{y}\|} \varphi_{i}(x) \varphi_{j}(y) \int_{0}^{T} \dot{b}_{k}(t) \ddot{b}_{l}(t-\|\mathbf{x}-\mathbf{y}\|) dt dS_{y} dS_{x}$$

$$+ \int_{\text{supp }\varphi_{i} \text{ supp }\varphi_{j}} \int_{\boldsymbol{A}\pi|\mathbf{x}-\mathbf{y}\|} \frac{\operatorname{curl}_{\Gamma}\varphi_{i}(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma}\varphi_{j}(\mathbf{y})}{4\pi\|\mathbf{x}-\mathbf{y}\|} \underbrace{\int_{0}^{T} \dot{b}_{k}(t) b_{l}(t-\|\mathbf{x}-\mathbf{y}\|) dt}_{=:\widetilde{\Psi}_{k,l}(\|\mathbf{x}-\mathbf{y}\|) \in C^{\infty}(\mathbb{R})} dS_{v} y dS_{x},$$

- Allows for Sauter-Schwab quadrature over  $\operatorname{supp}\varphi_i \times \operatorname{supp}\varphi_i$
- The method allows variable order of temporal basis functions
- Computationally demanding ⇒ hybrid parallelization by OpenMP/MPI
- ullet To accelerate the assembly,  $\Psi$  and  $\widetilde{\Psi}$  are replaced by piecewise Chebyshev interpolants

System matrix with block-Hessenberg structure

|                                             | $b_1$ | $b_2$ |  | $b_N$ |
|---------------------------------------------|-------|-------|--|-------|
| $b_1$                                       |       |       |  |       |
| <i>b</i> <sub>1</sub> <i>b</i> <sub>2</sub> |       |       |  |       |
|                                             |       |       |  |       |
| ÷                                           |       |       |  |       |
|                                             |       |       |  |       |
| b <sub>N</sub>                              |       |       |  |       |

- $N \times N$  sparse blocks where N is number of time-steps
- Each block has dimension  $(p+1)M \times (p+1)M$
- Hybrid parallelization by OpenMPI and MPI
- System solved by GMRES



System matrix with block-Hessenberg structure

|             | $b_1$ | $b_2$ |  | $b_N$ |
|-------------|-------|-------|--|-------|
| $b_1$       |       |       |  |       |
| $b_1$ $b_2$ |       |       |  |       |
|             |       |       |  |       |
| ÷           |       |       |  |       |
|             |       |       |  |       |
| $b_N$       |       |       |  |       |

- $N \times N$  sparse blocks where N is number of time-steps
- Each block has dimension  $(p+1)M \times (p+1)M$
- Hybrid parallelization by OpenMPI and MPI
- System solved by GMRES



# Parallelization of the system matrix assembly

- Assembly of individual blocks
  - Precompute the non-zero pattern of the block
  - ② Distribute pairs of elements contributing to non-zero matrix entries among computational nodes using MPI
  - On each computational node assemble its contribution to the block in a shared memory using OpenMP
  - Gather the data on an MPI rank(s) owning the given block
- Distribution of blocks among MPI processes



### Preconditioning



• We approximate the upper Hessenberg matrix by an inexact lower triangular preconditioner:

$$\mathbf{A} := \begin{pmatrix} \mathbf{A}_{I,I} & \mathbf{A}_{I,II} \\ \mathbf{A}_{II,I} & \mathbf{A}_{II,II} \end{pmatrix} \approx \begin{pmatrix} \widehat{\mathbf{A}}_{I,I} & \mathbf{0} \\ \mathbf{A}_{II,I} & \widehat{\mathbf{A}}_{II,II} \end{pmatrix} =: \widehat{\mathbf{A}}$$

in the recursive fashion so that  $\widehat{A}_{I,I}$  and  $\widehat{A}_{II,II}$  are again the inexact lower triangular preconditioners to the upper Hessenberg matrices  $A_{I,I}$  and  $A_{II,II}$ , respectively.

- Only a few iterations of the inner solvers are applied
- Since the inner systems are solved inexactly we use the FGMRES algorithm [Saad 93].

### Convergence

- $\|\phi \phi_{\text{ex}}\|_{L^2(\Gamma,[0,T])}$  for T = 6
- exact solution for special RHS g(x,t) given in [Veit: Numerical Methods for Time-Domain Boundary Integral Equations, 2011]
- Legendre polynomial order p = 1





### Convergence

- $\|\phi \phi_{\text{ex}}\|_{L^2(\Gamma,[0,T])}$  for T = 6
- exact solution for special RHS g(x,t) given in [Veit: Numerical Methods for Time-Domain Boundary Integral Equations, 2011]
- Legendre polynomial order p = 2





# Convergence of iterative solver

|    | GMRES(50)    |          |  |  |  |
|----|--------------|----------|--|--|--|
| Ν  | # iterations | time [s] |  |  |  |
| 5  | 595          | 1.6      |  |  |  |
| 10 | 2121         | 14.3     |  |  |  |
| 15 | 4021         | 44.5     |  |  |  |
| 20 | 5448         | 99.0     |  |  |  |

Table: Convergence of GMRES for p = 1.

|     | FGMRES(50, 1(10)) |          | FGMRES(50, 1(5)) |          | FGMRES(50, 2(2, 10)) |          |
|-----|-------------------|----------|------------------|----------|----------------------|----------|
| Ν   | # iterations      | time [s] | # iterations     | time [s] | # iterations         | time [s] |
| 5   | 24                | 0.7      | 45               | 0.9      | 23                   | 0.8      |
| 10  | 43                | 3.1      | 126              | 6.8      | 26                   | 3.3      |
| 15  | 51                | 7.3      | 205              | 20.0     | 28                   | 5.9      |
| _20 | 48                | 9.7      | 341              | 51.2     | 34                   | 10.6     |

Table: Convergence of FGMRES with recursive preconditioner for p=1.

# Convergence of iterative solver

 Comparison of solution by GMRES, DGMRES, and FGMRES with recursive preconditioner



## Parallel assembly and solve

#### Matrix assembly scalability





| GMRES(500) |              | FGMRES(50 | 0, 1(30))    | FGMRES(500, 1(40)) |              |          |
|------------|--------------|-----------|--------------|--------------------|--------------|----------|
|            | # iterations | time [s]  | # iterations | time [s]           | # iterations | time [s] |
| _          | 9656         | 1607      | 307          | 1076               | 243          | 962      |

- 5604 surface elements, 40 time-steps, p=1, up to 64 compute nodes, 16 OpenMP threads per node
- computed at the Anselm cluster (209 comp. nodes, 2x 8-core Intel Xeon E5-2665, Sandy Bridge, 64 GB RAM, InfiniBand)



#### Conclusion & outlook

- Parallel implementation of BEM for the wave equation based on an approach using smooth temporal basis functions to overcome problems with numerical integration
- For Dirichlet and Neumann problem
- Implemented in the in-house boundary element library BEM4I
- Outlook
  - Improvement of a preconditioner
  - Better load balancing for parallel computation
  - Problems on half-spaces

#### References

A. Veit, M. Merta, J. Zapletal, and D. Lukáš. *Numerical solution of time-domain boundary integral equations arising in sound-hard scattering.* Int. J. Numer. Meth. Engng. 2016. In press.

S. Sauter, A. Veit. A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numerische Mathematik. 2013.

## Thank you for your attention!



#### Conclusion & outlook

- Parallel implementation of BEM for the wave equation based on an approach using smooth temporal basis functions to overcome problems with numerical integration
- For Dirichlet and Neumann problem
- Implemented in the in-house boundary element library BEM4I
- Outlook
  - Improvement of a preconditioner
  - Better load balancing for parallel computation
  - Problems on half-spaces

#### References

A. Veit, M. Merta, J. Zapletal, and D. Lukáš. *Numerical solution of time-domain boundary integral equations arising in sound-hard scattering.* Int. J. Numer. Meth. Engng. 2016. In press.

S. Sauter, A. Veit. A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions. Numerische Mathematik. 2013.

### Thank you for your attention!

