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Boundary element method in the BEM4I library

e Boundary element method

Reduces problem to the boundary of computational domain
Suitable for exterior problems or shape optimization

o BEM4I

Developed at IT4lnnovations National Supercomputing Center,
Ostrava, Czech Republic

C++, OpenMP & MPI, SIMD vectorization

Acceleration using the Intel Xeon Phi coprocessors

Adaptive Cross Approximation

BETI by interfacing the ESPRESO DDM library

3D Laplace, Helmholtz, Lamé, and wave equation
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Boundary integral formulation

Wave equation

Sound-hard scattering problem
C%%(L t) — Auvc(x,t) = 0 in 2 xR,
u*(x,0) = 0 in £2,
W (x,0) = 0 in £,
9 (x,t) = —agi::c (x,t) on 02 x Ry.
0 VJUSC
@ Space-time integral equations use
o using the fundamental solution of the
- uSC
wave egua'tlon ' ~
e global in time - large system matrix
e special quadrature method needed. 94 r
u/‘nc
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Boundary integral formulation

Boundary integral formulation

Boundary integral ansatz [Bamberger, Ha-Duong 86]

We search for u°° in the form of the retarded double-layer potential

sc__ 1 [ n(x—y) ((ﬁ(y,tflle)'l\) é(y,tflle}'l\)> ds
u = 2 Yy
4r Jp lIx—yll [x =yl Ix =yl

which satisfies the wave equation and the initial conditions. It remains to fulfill the
Neumann boundary condition

lim  ne - Vzue(x,t) = g(x,t) on I' x [0, T],
23x—xel’

=:(We)(xt)

auinc

where g 1= — 5.
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Boundary integral formulation

Boundary integral formulation

Weak boundary integral formulation [Bamberger, Ha-Duong 86]
Find ¢ such that

a(§, ¢) = b(§) VEeV,

where

aeor=[" [ [ {47r||x iy = =y

n curlpé(x,t) - curlpd(y, t — ||x — yl|) } dS, dS, dt

drx =yl
) =/0 /Fg(X, t) €(x, t) dSy dt.
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Discretization

Discrete ansatz

Replace V by a finite-dimensional subspace V"4t
temporal and M spatial basis functions:

N M
hAt ZZO(;SDJ (x) bi(t)

=1 j=1

We arrive at the (N M) x (N M) block linear system

A1,1 e A1’N (85} bl

AN,l AN,N N b/v

where

(Akr)ij = alpi(x) bu(2), 0i(y) bit)) - (bi); = b(pi(x) bi(t))

(a/)j =

spanned by the tensor-product of N

o,
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System matrix

= (IIx=yll)

Ny -n T, .
(Ac1); / / — T 0i(x) pi(y) /0 bi(t) bi(t — [[x — yl|) dt dSy dSx

ar||x — y|

Supp @; supp ¢;

curl x) - curl T,
N / /‘ pcp, ) rej y) / bk(f) b/(tf fo_yH)dt dSy dSx,
4rllx -yl 0

Supp ¢; SuUpp ¢;

= (lIx—yl)

Integration problem
Piecewise polynomial time-ansatz ~~ expensive
quadrature due to nontrivial intersection of the light cone

supp %,;, supp ¥k

with

SUpp @; X Supp ;.
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C*° temporal basis functions

@ In cooperation with A. Veit (Uni. of Zurich/Chicago)
@ C™ temporal basis functions based on the partition of unity method [Sauter, Veit,
2012

@ Temporal basis functions in the form

bim := i(t)Pm(t)

o ¢i(t) are C* partition of unity function, {P,(t)}" _, are Legendre

polynomial
1 - 1
serf (2artanht) + 5 [t <1, it <%
Ft)=140 t<—1,  fi()=f (2 o 1) » Where f; (1) = { (1) ; ;i"
1 t>1 At Z lit1-
fier(t) i <t <ty
pi(t)i=q L=fit) t<t<tiy, By i=1—fo, Oy:i=fn-a Vie{2...,N—1}: :=p ;.
0 otherwise.
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Discretization

C*° temporal basis functions

=2 (IIx—yINEC(R)

-
nx-n . ..

Al . = L L Ay ; b (t) By(t — ||x — y||) dt dS, dSx

A= [ ] et [ bobie x -yl de dsy ds

SUpp @; Supp ¢;

/ CuI‘lng,'(X) . Cuﬂ[‘(pj
4rl|x -yl

) [7;
+ b(t) bi(t — |Ix — y||) dt dS,y dSx,
0

Supp ¢; supp ¢;
= ([l x—yl)EC>=(R)

@ Allows for Sauter-Schwab quadrature over suppy; X suppy;
@ The method allows variable order of temporal basis functions
@ Computationally demanding = hybrid parallelization by OpenMP/MPI

@ To accelerate the assembly, ¥ and U are replaced by piecewise Chebyshev interpolants
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C*° temporal basis functions

@ System matrix with block-Hessenberg structure

by b, - b

b
b,

by

N x N sparse blocks where N is number of time-steps
Each block has dimension (p +1)M x (p + 1)M
Hybrid parallelization by OpenMPI and MPI

System solved by GMRES
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C*° temporal basis functions
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b b, - b

b

by
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Parallelization

Parallelization of the system matrix assembly

@ Assembly of individual blocks

@ Precompute the non-zero pattern of the block
@ Distribute pairs of elements contributing to non-zero matrix entries

among computational nodes using MPI
© On each computational node assemble its contribution to the block in

a shared memory using OpenMP
@ Gather the data on an MPI rank(s) owning the given block

@ Distribution of blocks among MPI processes

A, A, 0 0o o0 o0 o0 o©
AZ,] Azz Az,a 0 0 0 0 0 10

A;, Asy Aszs Asg O 0 0 O 2[1]o

0 Ay, 54,3 1:34,4 :4,5 o 0 0 R 4]3[1]0

0 0 Asz Asy Ass Asg 0 0 413]2(0
0 0 0 Asq Ass Ass Asz O 4[3]2]1
0 0 0 0 A7,5 A?,a A7,7 ~7,8 4132
0 0 0 0 0 Ags Agy Agg
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Parallelization

Preconditioning

@ We approximate the upper Hessenberg matrix
by an inexact lower triangular preconditioner:

b, b, by
A= (

o

by applied

in the recursive fashion so that Z\\,,, and 2\\”,”
are again the inexact lower triangular
preconditioners to the upper Hessenberg
matrices A;; and Ay j, respectively.

@ Only a few iterations of the inner solvers are

@ Since the inner systems are solved inexactly we
use the FGMRES algorithm [Saad 93].
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Numerical experiments

Convergence

o [|¢ — exlli2(rjo,mp) for T=106
@ exact solution for special RHS g(x, t) given in [Veit: Numerical
Methods for Time-Domain Boundary Integral Equations, 2011]

@ Legendre polynomial order p =1

L2 error

20
Number of timesteps
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Numerical experiments

Convergence

o [|¢ — exlli2(rjo,mp) for T=106
@ exact solution for special RHS g(x, t) given in [Veit: Numerical
Methods for Time-Domain Boundary Integral Equations, 2011]

@ Legendre polynomial order p =2

L2 error
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Numerical experiments

Convergence of iterative solver

GMRES(50)
N # iterations time [s]
5 595 1.6
10 2121 143
15 4021 44.5
20 5448 99.0

Table: Convergence of GMRES for p = 1.

FGMRES(50, 1(10))

FGMRES(50, 1(5))

FGMRES(50, 2(2, 10))

N # iterations time [s] # iterations time [s] # iterations time [s]
5 24 0.7 45 0.9 23 0.8
10 43 3.1 126 6.8 26 33
15 51 7.3 205 20.0 28 5.9
20 48 9.7 341 51.2 34 10.6

Table: Convergence of FGMRES with recursive preconditioner for p = 1.
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Numerical experiments

Convergence of iterative solver

e Comparison of solution by GMRES, DGMRES, and FGMRES with
recursive preconditioner

Residual

10° 10° *
ITteration
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Numerical experiments

Parallel assembly and solve

Matrix assembly scalability

A o
f N
TN .
[P —— B R———— )
GMRES(500) FGMRES(500,1(30))  FGMRES(500, 1(40))
#t iterations  time [s]  # iterations time [s]  # iterations  time [s]
9656 1607 307 1076 243 962

@ 5604 surface elements, 40 time-steps, p = 1, up to
64 compute nodes, 16 OpenMP threads per node
@ computed at the Anselm cluster (209 comp. nodes, L=
2x 8-core Intel Xeon E5-2665, Sandy Bridge, 64 GB
RAM, InfiniBand)
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Numerical experiments

Conclusion & outlook

@ Parallel implementation of BEM for the wave equation based on an approach using
smooth temporal basis functions to overcome problems with numerical integration

@ For Dirichlet and Neumann problem
@ Implemented in the in-house boundary element library BEM4I

@ Outlook

@ Improvement of a preconditioner
@ Better load balancing for parallel computation
@ Problems on half-spaces
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Thank you for your attention!
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